历史变迁

文字大小

感器快速检测技术应运而生

来源:股票研究数字通时间:2025-07-18 06:57:03

导读

感器快速检测技术应运而生

传统的磁弛检测方法大多依赖于精密仪器,虽然测定准确、豫生应用研究灵敏度高,物传但仪器价格高、感器难以便携、食品操作复杂,安全从而限制了其在现场检测中的快速应用。因此,检测进展越来越多的磁弛科研工作者致力于研究快速、便捷、豫生应用研究简单的物传检测手段,以期能够有效监测食品安全问题以及实现临床早期诊断,感器快速检测技术应运而生。食品近年来,安全各种快速检测技术被报道,快速其中生物传感器备受关注。生物传感器是一种由物理、化学、生物等多学科交叉融合而发展起来的高新检测技术,主要通过生物分子识别元件(如抗体、酶、核酸等)识别目标物,然后利用信号转换器将其转换为光、电、磁等易于捕获识别的信号,进而实现目标物简易高效分析的方法。

因其检测快速、自动化程度高、易于操作,生物传感器已经在生物化学分析、食品安全检测、环境监测等各领域得到了广泛应用。主要包括电化学生物传感器、光学生物传感器等,但这些生物传感器大多仍然受到精密仪器、检测经济性、样品基质干扰等方面的影响,其性能在快速检测方面尚需进一步提高。

磁弛豫生物传感器(magneticreGlaxationswitching,MRS)亦是近年来多次被报道的生物传感技术之一。MRS传感器是以磁弛豫时间作为读出信号,进行目标物定性定量的快速检测方法,具有检测快速、操作简单、信噪比高、易于实现现场检测等优点,是快速检测领域最受关注的研究方向之一。本研究围绕MRS传感器的传感机制、研究进展、应用领域等方面进行了介绍,并对MRS传感器的发展进行了展望,以期能够促进快速检测技术的进一步发展。

1磁弛豫生物传感器的介绍磁弛豫生物传感器(MRS)的发展开始于磁纳米颗粒介导的水分子弛豫时间缩短现象的发现。在物理学上,弛豫指的是某种平衡状态被破坏后,又恢复到平衡态的过程,用弛豫时间来衡量弛豫过程的快慢。在核磁共振中,弛豫过程分为纵向弛豫(又称为自旋G晶格弛豫)和横向弛豫(又称为自旋G自旋弛豫),分别用纵向弛豫时间(longitudinalrelaxationtime,T1)和横向弛豫时间(transverserelaxationtime,T2)进行衡量。2002年,Weissleder课题组首次报道了磁弛豫现象,当超顺磁纳米颗粒(superparamagneticnanoparticles,MNPs,简称为磁颗粒)在水溶液中的状态(分散或聚集)发生变化时,能够引起其局部磁场均匀性发生改变,形成非均匀局部磁场,而不均匀磁场可加快周围水分子质子的横向弛豫速度,进而缩短横向弛豫时间。

目前,磁弛豫时间传感现象以及相应传感器的开发仍是研究的热点之一。基于对磁弛豫传感现象的深入研究,各式各样的MRS传感器被开发和完善并广泛应用于食品安全检测、临床诊断分析、环境监测等多个领域(图1),配合便携式的微型核磁共振仪,可实现现场快速检测。

分类及应用

2磁弛豫生物传感器的分类

2.1磁颗粒介导的MRS

1)基于磁颗粒状态改变的MRS。基于磁颗粒状态改变的MRS的基本原理是将磁颗粒进行表面修饰,在其表面偶联上给体/受体(例如抗原/抗体、生物素/链霉亲和素、适配体等),从而制备成特异性磁信号探针,在检测分析过程中通过给体G受体的特异性识别作用导致其状态由分散变成聚集,从而产生磁弛豫传感现象(状态的改变会影响局部磁场的均匀性,周围水分子扩散经过这些不均匀磁场时导致质子横向弛豫加速,缩短横向弛豫时间(T2),其中,磁探针状态改变的程度、T2的改变量均与样品中目标物含量成正相关,从而达到定量定性检测的目的。Weissleder课题组率先构建了基于磁颗粒状态改变的MRS免疫传感器并用于与人类疾病密切相关的血清中疱疹病毒和腺病毒的快速灵敏检测(图2A)。

该方法检出限为5个病毒/10μL血清(25%的蛋白),并且由于无需PCR扩增过程,有效提高了检测效率,具有快速、高灵敏等优点。KaitGtanis等基于同样的原理建立了检测血清和牛奶中副结核鸟分枝杆菌(Mycobacteriumaviumspp.Paratuberculosis,MAP)的磁免疫传感方法,检出限可达到15.5CFUs(colonyformingunits,CFUs),远远低于其他传统的方法。MRS免疫传感器有以下几个优点:(a)分析速度快,因为磁颗粒的存在,检测中可以通过磁分离而缩短分析时间;(b)信噪比高,将磁颗粒作为磁信号探针,大多数样品中的磁信号可以忽略不计,是一种均相免疫分析方法;(c)特异性强,基于抗原与抗体的特异性结合,该方法具有良好的特异性;(d)所需样品量少。但传统的MRS免疫传感器由于是基于磁颗粒状态的改变,磁信号只在一定范围内和目标物的浓度成正相关,检测的线性范围较窄。

此外,由于磁颗粒的状态改变容易受到样品基质等多因素的干扰,产生非特异性聚集,导致方法的稳定性较差。为解决传统基于磁颗粒状态MRS的局限性,科研工作者开展了大量的工作。其中,采用新型的磁颗粒聚集介导信号放大策略能够有效提高生物传感器性能。Chen等构建了一种基于磁/银纳米粒子自组装的磁弛豫生物感应分析方法,并用于氯霉素(chloramphenicol,CAP)的高灵敏检测。氯霉素是一种可以人工合成的广谱性抗生素,滥用的CAP能够通过食物链在人体富集,并产生细菌耐药性、降低免疫力等严重危害。

我国农业农村部早在2003年第235号公告中就将CAP及其盐、酯类列入禁用药物,并明确规定在所有动物性食品中不得检出CAP。该方法的原理是基于竞争性免疫反应,不同浓度的氯霉素竞争结合不同量的碱性磷酸酶(alkalinephosphatase,ALP)标记的单克隆抗体(alkalinephosphataseGAntibody,ALPGAb),ALPGAb中的ALP能够催化抗坏血酸酯去磷酸化,产生具有还原性的抗坏血酸盐,进而将银离子还原为银纳米颗粒,磁纳米颗粒进一步在其表面组装形成磁/银纳米粒子,使磁颗粒由原先的单分散状态变为聚集状态,导致T2信号的变化,从而对目标物进行定量分析。在本方法中ALP的催化放大作用及银颗粒引导的信号产生和读出机制,有效提高了磁弛豫传感器的灵敏度。与传统MRS免疫传感器相比,此传感器的灵敏度提高了50倍,分析性能良好,在有害小分子检测方面具有良好的潜力。

声明:本文所用图片、文字来源《华中农业大学学报》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系

相关链接:氯霉素酯类磷酸

大连医科大学附属第一医院
首都医科大学附属北京朝阳医院
四川大学华西医院
重庆医科大学附属第一医院
北京医院
中国医学科学院阜外医院
吉林大学第二医院
河南科技大学第一附属医院
山西医科大学第一医院
中山大学附属第一医院
承德医学院附属医院
山东省立医院
浙江大学医学院附属邵逸夫医院
天津医科大学总医院
海军军医大学附属长海医院
温州医学院附属第一医院
深圳市人民医院
空军军医大学西京医院
蚌埠医学院第一附属医院
深圳市第六人民医院(南山医院)
上海交通大学医学院附属瑞金医院
青岛大学附属医院
北部战区总医院
济宁医学院附属医院
福建医科大学附属第一医院
烟台市烟台山医院
哈尔滨医科大学附属第二医院
昆明医科大学第一附属医院
山东淄博市第一医院
南京鼓楼医院
东莞市人民医院
新疆医科大学第一附属医院
北京京煤集团总医院
首都医科大学附属北京潞河医院
新疆维吾尔自治区人民医院
中南大学湘雅医院
广州医科大学附属第一医院
北京协和医院
江阴市人民医院
河北医科大学第二医院
中国人民解放军总医院第六医学中心
沈阳医学院附属中心医院(奉天医院)
天津市宁河区医院
四川省人民医院
邯郸市第一医院
潍坊呼吸病医院
云南省第一人民医院
山西省人民医院
内蒙古医学院第三附属医院
河北衡水哈励逊国际和平医院
海南省人民医院
青海省人民医院
贵州省人民医院
华北理工大学附属医院
福建省泉州市第一医院
锦州医科大学附属第一医院
首都医科大学附属复兴医院
淄博市立医院
山西省太原市中心医院
上海市肺科医院
新疆医科大学第三附属医院
山西医学科学院山西大医院
天津市海河医院
战略支援部队特色医学中心
河北医科大学第三医院
北京积水潭医院
无锡市人民医院
新疆维吾尔自治区中医医院
安徽省胸科医院
空军军医大学唐都医院
广东省人民医院 
复旦大学附属华山医院
首都医科大学附属北京安贞医院
中国人民解放军总医院第一医学中心
宁夏医科大学总医院
河南省焦作市第二人民医院
首都医科大学附属北京同仁医院
南方医科大学南方医院
南昌大学第二附属医院
北京市大兴区人民医院
上海交通大学医学院附属新华医院
内蒙古自治区人民医院
南昌大学第一附属医院
中国医科大学附属盛京医院
西安交通大学第一附属医院
河北医科大学第一医院
广西壮族自治区人民医院
北京市顺义区医院
复旦大学附属中山医院
中山大学附属第三医院
粤北人民医院
首都医科大学附属北京世纪坛医院
中国科学院大学附属北京怀柔医院
首都医科大学附属北京儿童医院
天津市第一中心医院
华中科技大学同济医学院附属同济医院
兰州大学第二附属医院
西藏自治区第二人民医院
唐山工人医院
中日友好医院

上一篇: 520心动之选 三星Galaxy A55 5G让您的爱意绽放 -

下一篇: 感情案牍典范短句句子案牍句句进心